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My research goal is to develop novel theory and statistically principled methodologies for learning and un-
derstanding fundamental network structures in complex interactive systems. A key focus of this goal is
characterizing statistical complexity, computational efficiency, estimation accuracy, and their trade-offs for
network structure inference under realistic network constraints. Towards this goal, my research spans topics
in high-dimensional statistics, graphical models, network theory, and optimization.

Large-scale networked systems are ubiquitous across diverse domains, ranging from physical systems such as
power and transportation networks to conceptual networks such as brain and social interaction networks. A fun-
damental challenge in understanding these systems is that their network structure is often unknown and needs
to be estimated from data. This task, commonly referred to as the network structure learning problem, extends be-
yondmerely identifying the network’s connectivity pattern—it also encompasses learning richer structures such as
hierarchical organizations, recurringmotifs like cycles, trees, and other higher-order patterns. This task is a critical
step for effective modeling, management, and control of networked systems. While learning the network struc-
ture is not only crucial for several downstream tasks like resource allocation in power networks or analyzing the
spread of rumors in social networks, it is also an end goal for many scenarios such as understanding the human
brain connectome. Despite remarkable advances in high-dimensional estimation and statistical inference, apply-
ing these methods to real-world networks such as biological, sensor, and other engineered systems—remains
challenging. Domain-specific constraints like partial observability, network process constraints, and strict sample
budgets often render existing methods sub-optimal or ineffective. Motivated by these challenges, my long-term
research goal is to build the next generation of statistically principled methods and theory for large-scale net-
work structure learning that is robust, interpretable, and adaptive to domain-specific constraints.

The task of network structure learning necessitates a systematic study of how information or signals distributed
over a network interact through an underlying network process, and how these interactions can be harnessed to
infer the network’s structure. To formalize this idea, I introduceNetwork Stochastic Process (NSP)—anovel frame-
work that underpins my research vision. An NSP is defined as a tuple (Y, X, N , f), where N = {V, E} represents
the network with the vertex set V (objects) and the edge set E (connections between objects). The component
X denotes an exogenous multivariate stochastic process supported on the network, meaning that each node i is
associated with the i-th coordinate of X . The observed process Y is given by Y = f(X, N ,measurement noise),
where f is a function that maps (X, N ) 7→ Y that encapsulates how the network structure and the underlying
stochastic process together generate the observed data. Here, Y and X represent the signals on the network and
f characterizes the interactions between them—modeling simple linear interactions to highly complex dynamics.
A canonical example of an NSP is a power network where the network structure N is characterized by its graph
Laplacian L, X represents current injected into the system, Y corresponds to the measurable node potentials,
and f is a mapping such that Y = L−1X (see, Section 1). While our goal is to estimate the network structure
from observational data Y alone, this problem is fundamentally ill-posed without knowledge of X or additional
structure. This motivates the need for a broader organizing principle to frame the learning problem. In my work, I
approach the network structure learning through the lens of learning simple networkmodels from simple network
processes. This perspective is grounded in the principle of parsimony—the insight that simple models and pro-
cesses can not only explain complex data effectively but are also easier to estimate, leading to gains in statistical,
computational efficiency, and interpretability. The incorporation of parsimony into the learning framework forms
the core of my research vision and provides a unifying theme across my past, future work, and long-term goals.
I will provide an overview of my prior research, demonstrating how this vision shapes my approach to tackling
challenges at the intersection of statistics, computation, and learning.

1 Overview of my research

A Learning Networks that Obey Conservation laws [1–4]: Conservation laws regulate edge flows in several net-
worked systems like power grids (electric current), pipelines (fluid flow), transportation networks (traffic flow),
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and even brain networks (information flow in the brain). The network process of such systems is described by
steady-state equations (also called balance equations) given by X = LY , where X is the random vector of exoge-
nous inputs (e.g., current injections in power networks), Y represents a vector of node observations (e.g., node
potentials) and L is the Laplacian that encodes connectivity structure of the network. From the NSP framework,
this relationship simplifies to Y = L−1X . In [1], we address the challenge of estimating the matrix L from n

independent and identically distributed (i.i.d.) samples of observational data Y when the latent inputs X are un-
observable but with known covariance structure. We propose an estimator L̂ that recovers the network structure
(i.e., recovers the support of L and is close to L in matrix norm) in the high dimensional regime where the net-
work size far exceeds the number of samples. Furthermore, we give a precise characterization of the statistical
complexity for the estimator to achieve this task. In [2], we extend this framework to the more challenging setting
where the noise injections Xt follow awide-sense stationary (WSS) stochastic process. Notwithstanding the chal-
lenges posed by temporal dependencies in the data and the intractability of the estimator from [1], we introduce a
novel estimator that achieves analogous results as that of [1]. Our approach is further validated through extensive
experimental studies on real-world networks, including power, water, and brain networks. While our earlier works
focused on static networks, we also explore dynamic networks that evolve over time, such as changing friend-
ship ties in social networks. In [3, 4], we tackled the differential network analysis problem: estimating the sparse
difference matrix ∆∗ = L∗

2 − L∗
1 from i.i.d. node potential observations at two distinct time points. The proposed

estimator directly learns the sparse edge changeswithout estimating the individual networks separately, providing
strong theoretical guarantees similar to those in our previous works.

A Learning Gaussian Graphical Models from Glauber dynamics [5]: Glauber dynamics (or Gibbs sampler) is a
stochastic process where variables are sequentially updated based on their local statistics—an instance of par-
simonious NSP. This process naturally emerges in various settings, from opinion formation in social networks to
stock-price dynamics in financial markets. In [5], we developed the first algorithm for Gaussian graphicalmodel se-
lection fromGlauber dynamics data. Our key contribution is characterizing theminimum observation time needed
to estimate the graph structure. Notably, our algorithm is not only the first of its kind but is also nearly minimax
optimal for a broad class of graphical models.

Integrating parsimonious assumptions into our framework naturally reduces statistical complexity—shaving off a
factor of O(d2) for [1, 3, 4] and O(d3) for [2], where d is the maximum degree of the network. For [5], we show that
learning a graphical model from complex processes like Glauber dynamics is nearly as efficient as learning a stan-
dard Gaussian graphical model. These results demonstrate how parsimony drives gains in statistical efficiency
and theoretical simplicity.

2 Future Research Agenda
As highlighted in this statement, my research is characterized by a principled approach to integrating latent struc-
tures inherent in various statistical problems to achieve significant gains in statistical efficiency and interpretabil-
ity. Building on this foundation, I aim to extend this research vision to tackle critical applications in diverse
domains, from neuroscience to computational chemistry and biology. Below, I outline a few research directions
that advance my research trajectory toward this goal.

� Learning Graphs from Multimodal Data: While my research so far has primarily focused on learning undirected
networks from i.i.d. and time series data—real-world data structures are far more complex. Recent engineering
breakthroughs have enabled the acquisition of rich multimodal data, offering new opportunities to understand
complex systems better. For instance, simultaneously collecting electroencephalogram (EEG) and functional
magnetic resonance imaging (fMRI) data from the same set of subjects provides complementary time series
data that capture distinct information attributes. Learning graphs—whether undirected or directed—from such
multimodal data is a critical yet underexplored problem. While multimodal data holds significant promises for
addressing data scarcity, it introduces several challenges. For instance, multimodal data exhibit high correlation
across modes—rendering traditional graph learning methods inadequate. Additionally, data noise and sampling
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inconsistencies—where some modes are densely sampled while others are sparse—can lead to dissimilar and
inaccurate graphs when each modality is analyzed independently. Estimation challenges are further amplified
in high-dimensional regimes where the ambient dimension far exceeds the sample size. To address these chal-
lenges, I aim to develop a systematic framework that models all data modalities as functional data (e.g., multi-
variate Gaussian processes) originating from a shared latent space. This framework will enable the estimation
of edge sets in the latent space. Moreover, this approach also aligns closely with causal representation learning
where the focus is on identifying causal relationships in latent spaces using high-level observational data such as
images and videos. Developing a statistical theory for these frameworks is an open problem, andmy research will
focus on bridging this gap.

� Statistical Theory of Higher-Order Graph Representations: Building on their success as universal approxima-
tors, Graph Neural Networks (GNNs) have increasingly been used to learn undirected or causal graphs. Beyond
graph generation, GNNs demonstrate exceptional performance in complex combinatorial tasks such as counting
specific substructures or motifs in graph-structured data—a critical capability for applications in computational
chemistry and biology. Notably, graph generation aligns closely with learning a function f in the NSP framework
proposed in this statement. Despite the strong empirical performance of GNNs in these unsupervised tasks, a
rigorous theoretical understanding is still lacking. My future research goals aim to develop a non-parametric func-
tion approximation theory for GNNs, establishing a principled framework that enhances their applicability and
theoretical understanding in high-dimensional and complex data environments.

� Structured Dimensionality Reduction of Large Graphs: While my research has largely focused on the statis-
tical estimation of high-dimensional graphs, graph inference is equally important for enhancing interpretability.
High-dimensional graphs are prevalent in various domains like neuroscience and genomics and current graph
dimensionality reduction methods preserve structural metrics like Gromov-Wasserstein distance but neglect the
semantic meaning of nodes and edges. This calls for a structured dimensionality reduction approach that main-
tains both graph distances and semantic properties, particularly conditional independence relationships in graph-
ical models. Key questions include the feasibility of preserving conditional independence during dimensionality
reduction, the nature of such mappings (linear vs nonlinear), and fundamental limits on dimensionality reduction.
These questions have direct applications in neuroscience, where brain connectomes exhibit high dimensional-
ity yet a natural hierarchical structure. Developing methods to harness this structure could provide new insights
into the intricate relationship between structural and functional connectivity, advancing our understanding of the
human brain connectome.
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